分部积分法的公式
发布于 2021-06-16 19:12:46
浏览 289
详情:
1、
∫ u'v dx = uv - ∫ uv' dx。分部积分:(uv)'=u'v+uv'得:u'v=(uv)'-uv'两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx即:∫ u'v dx = uv - ∫ uv' dx,这就是分部积分公式也可简写为:∫ v du = uv - ∫ u dv扩展资料:不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C求不定积分的方法:第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
上一篇:微积分常用公式有哪些?
下一篇:惯性矩计算公式