求值域的几种方法
发布于 2020-03-30 16:53:59
浏览 181
详情:
1、
1.直接法:从自变量的范围出发,推出值域。
2、
2.观察法:对于一些比较简单的函数,可以根据定义域与对应关系,直接得到函数的值域。
3、
3.配方法:(或者说是最值法)求出最大值还有最小值,那么值域就出来了。
4、
例题:y=x^2+2x+3x∈【-1,2】
5、
先配方,得y=(x+1)^2+1
6、
∴ymin=(-1+1)^2+2=2
7、
ymax=(2+1)^2+2=11
8、
4.拆分法:对于形如y=cx+d,ax+b的分式函数,可以将其拆分成一个常数与一个分式,再易观察出函数的值域。
9、
5.单调性法:y≠ca.一些函数的单调性,很容易看出来。或者先证明出函数的单调性,再利用函数的单调性求函数的值域。垍
10、
6.数形结合法,其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
11、
7.判别式法:运用方程思想,根据二次方程有实根求值域。垍
12、
8.换元法:适用于有根号的函数垍
13、
例题:y=x-√(1-2x)
14、
设√(1-2x)=t(t≥0)垍
15、
∴x=(1-t^2)/2
16、
∴y=(1-t^2)/2-t
17、
=-t^2/2-t+1/2
18、
=-1/2(t+1)^2+1垍
19、
∵t≥0,∴y∈(-∝,1/2)
20、
9:图像法,直接画图看值域
21、
这是一个分段函数,你画出图后就可以一眼看出值域。
22、
10:反函数法。求反函数的定义域,就是原函数的值域。
23、
例题:y=(3x-1)/(3x-2)
24、
先求反函数y=(2x-1)/(3x-3)
25、
明显定义域为x≠1
26、
所以原函数的值域为y≠1
上一篇:梯形体积如何计算
下一篇:化学工程与技术专业就业前景如何